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Abstract-  
Background: Aberrant protein glycosylation is a common 

feature of cancer and contributes to malignant behavior. 
However, how and to what extent the cellular glycome is 
involved in cancer development and progression is still 
undefined. The primary objective of this study is to conduct in-
silico identification of glycome genes that could reveal a 
signature of cancer using expression profiles of cancer genomes. 
There exists a list of ~500 glycome genes in several molecular 
categories. This study is based on the hypothesis that if the 
glycosylation is a common feature of cancer, there exists a 
shortlist of cancer glycome genes and their expression profiles 
should carry the signature capable of differentiating 33 different 
cancers available in The Cancer Genome Atlas (TCGA).  

Method: The distribution of cancer samples in TCGA is 
highly imbalanced, ranging from 36 for Cholangiocarcinoma 
(CHOL) to 1089 for Breast Cancer (BRCA).  Supervised feature 
selection approaches to identify the signature genes would be 
biased to larger groups. We developed a computational 
framework using concrete autoencoder (CAE), a deep learning-
based unsupervised feature selection algorithm, to find the 
cancer-related glycome genes. The criteria of optimal feature 
subset used in this study are (a) the number of features should be 
as few as possible, and (b) accuracy of classification using the 
selected features should be > 90%. 

Results: Our experiment showed a shortlist of glycome 
genes (132 genes) that can differentiate 33 different cancers with 
an accuracy of 92%. This study reflects that the cancer glycome 
genes signify the origins of cancer. 

Keywords – Concrete Autoencoder, Deep learning, Feature 
Selection, Cancer Glycobiology. Glycome Gene. 
 
+ Co-corresponding author; *Primary corresponding author 

 

I. INTRODUCTION 
One of the most ubiquitous pathways in nature is cell 

glycosylation. Post-translational glycosylation of proteins is a 
common cellular activity, wherein most if not all proteins are 
glycosylated [1]. While adding structure and stability, protein 
glycosylations also provide binding motifs for other molecular 
partners (e.g., Lectins). They often offer physical subtleties that 
impact protein complexing, membrane/cytosolic dynamics, and 
functional activity. In cancer, these biological characteristics 
imparted by cellular glycosylation are fundamentally aberrant 
due to variances in the 'glycome' gene [2]–[4]. Altered protein 
glycans and their glycan-modifying enzymes are now considered 
key features of cancer. Intensive efforts are underway to 
understand better how aberrant glycosylation can facilitate 
tumorigenicity, tumor progression, and metastatic behavior [1].  
Considering the breadth and mounting evidence for the key role 
of aberrant glycosylations in cancer progression, we speculate 
that distinct glycome gene signatures align with a particular 
cancer glycosylation pattern originating from a particular cell 
lineage. 

Many computational methods fail to identify a small number 
of relevant features, rather increase learning costs and deteriorate 
performance [5]. It may be argued that the larger the feature set, 
the better the classification. However, in a general setting, not all 
of these features will be necessary for optimal classification [6], 
[7]. Only a selected number of significant or relevant features can 
lead to optimal classification. Many of the remaining features are 
not significant and could be either noise, irrelevant to the study, 
or even redundant [8]. The use of such insignificant features can 
lead to unwanted computational complexities and deteriorate the 
model's performance. This is more pronounced when working 
with high-dimensional data. Thus, it is essential to identify the set 
of significant features that can provide us with the optimal 
classification and clustering. To accomplish this objective, we 
need a robust method that can eliminate the redundant features 
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and noise that do not carry any information about the data labels, 
thus providing us with only relevant features [9].  

The problem in consideration comes with a highly 
imbalanced distribution of data ranging from 36 for CHOL cancer 
to 1089 for BRCA. Any supervised feature selection approaches 
such as LASSO, RF, and RFE will be biased to heavy groups. To 
find appropriate features that can differentiate 33 different cancer, 
we need a robust unsupervised feature selection approach.  

Over the past decade, many unsupervised feature selection 
algorithms have been developed. The popular algorithms, using 
regularization as the means for selecting discrete features, are 
Multi-Cluster Feature Selection (MCFS) [10], Unsupervised 
Discriminative Feature Selection (UDFS) [11], and AutoEncoder 
Feature Selector (AEFS) [12]. Recently, Abid et al. [13] 
developed Concrete Autoencoder (CAE) without resorting to 
regularization.  Rather, they used a continuous relaxation of the 
discrete random variables, the Concrete distribution [14]. MCFS 
[10] uses regularization to isolate the features preserving the 
clustering structure in the data. UDFS [11] incorporates 
discriminative analysis and ����-norm minimization on a set of 
weights applied to the input to select features most useful for local 
discriminative analysis. AEFS [12] uses ���� regularization on the 
weights of the encoder that maps the input data to a latent space 
and optimizes these weights for their ability to reconstruct the 
original input.   

The CAE [13] is an end-to-end differentiable method for 
global feature selection and capable of efficiently identifying a 
subset of the most informative features. It takes advantage of both 
(a) autoencoder (AE), which can achieve the highest 
classification accuracy, and (b) relaxation of the discrete random 
variables, the Concrete distribution [8], which is capable of 
selecting actual features instead of latent features. It has also been 
shown that CAE performs better than MCFS, UDFS, and AEFS 
in selecting discrete features [13], which motivated us to use CAE 
for feature selection in this study. The CAE filtered a shorter list 
of glycome genes related to 33 different cancers from the original 
larger list. 

II. MATERIALS AND METHODS 
A. Data Description 

The expression profiles and clinical data for 33 different 
cancers were downloaded from the UCSC Xena database [15]. 
This dataset contains expression profiles of about 60 thousand 
RNAs, including coding genes (mRNAs) and non-coding genes 
(lncRNAs and miRNAs). In this study, the expression profiles of 
glycome-related genes (n = 498) were considered for analysis and 
model evaluation. The glycome genes were procured from the 
study by Sweeney et al. [1]. Table I shows the distribution of 
glycome genes in 12 different categories at different levels of 
analysis. The original list consists of 696 genes with some 
duplicates. After removing duplicates, the unique list consists of 
529 glycome genes. Of 529, 498 genes have expression profiles 
for all the samples for 33 cancers, which were used to select a 
reduced list of features. It should be noted that this study was 
based on cancer patients only. So, normal samples available in 
the same cancer were removed. The final dataset contains 9,566 
cancer patients. The cancer-specific distributions based on 75/25 
(training/testing) split are shown in Fig. 1. Each mRNA 

expression was processed using a min-max normalization method 
to achieve good training performance. 

 

 
Fig. 1: Sample distribution for 33 cancers along with 75-25 split for training and 

testing. 
B. Features Selection 

It is clear from Figure 1 that the distribution of cancer 
samples is highly imbalanced, ranging from 36 for 
Cholangiocarcinoma (CHOL) to 1089 for Breast Cancer 
(BRCA). Since the data is highly imbalanced, a choice of 
supervised feature selection will result in highly biased results 
toward heavy groups. So, for selecting important features 
(glycome genes), a state-of-the-art deep learning-based 
unsupervised algorithm, Concrete Autoencoder (CAE), was used. 
The CAE takes advantage of both Autoencoder (AE) [16], 
capable of producing the highest accuracy, and Concrete 
Relaxation [14], capable of selecting actual features instead of 
latent features.  

TABLE I: Distribution of glycome genes among 12 different categories. Original 
dataset:696 glycome genes with some duplicates. Unique list:529 genes.  Feature 
selection experiment: 498 genes used. 

Category Original Unique Experiment
Adhesion Molecule 9 7 7 
CBP:C-Type Lectin 105 80 74 
CBP:I-Type lectin 27 21 20 
Galectin 14 13 12 
Glycan Degradation 87 61 59 
Glycosyltransferases 256 199 187 
Glycoproteins 53 38 31 
Intracellular protein 
transport 13 8 8 

Miscellaneous 8 6 6 
Nucleotide Sugar 
Transporters 72 57 57 

Proteoglycans 41 31 29 
Sulfotransferases 11 8 8 
Total 696 529 498 
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Fig. 2: Architecture of Concrete Autoencoder. CAE architecture consists 

of an encoder and a decoder. The layer after the encoder's input layer is called the 
concrete feature selection layer, as shown in yellow. This layer has k number of 
nodes where each node is for each feature to be selected. During the training stage, 
the ��� node 	
�� takes the value � f(i), where f(i) is the corresponding weight 
vector of node i. During the testing stage, these weights are fixed, and the element 
with the highest value is selected by the corresponding ��� hidden node. The 
architecture of the decoder remains the same during training and testing. 

 
Concrete autoencoder (CAE) proposed by [13] is a variation 

of the original autoencoder (AE) [16],  which is used for 
dimension reduction. An AE is a neural network that consists of 
two parts: (a) an encoder that selects latent features and (b) a 
decoder that uses selected latent features to reconstruct an output 
that matches the input with minimum error. In CAE, instead of 
using a sequence of fully connected layers in the encoder, a 
concrete relaxation-based feature selection layer is used where 
the user can define the number of nodes (features), k, as shown in 
Fig. 2. This layer selects a probabilistic linear arrangement of 
input features while training, which converges to a discrete set of 
k features by the end of the training phase, subsequently used in 
the testing phase.  

Let's p(x) is a probability distribution over a d-dimensional 
vector. The objective is to identify a subset of features, ��{1…k} 
of size |S|=k. Also, learning a reconstruction function 

��
� �� �
���

�
� ��, such that the loss between original sample x and 

reconstructed sample ��
��� is minimized as stated in Eq. 1,  
 
��� �!����"#
$�%&���
���� ' �&�(…………… (1) 

where �) * �
+ consists of only selected features �� s.t. � * ,. 

Note that samples are represented in a 2D matrix, X*�-./, and 
the aim is to pick k columns of X such that sub-matrix ) * �

-.+. 
Later, selected feature set �) can be used to reconstruct the 
original matrix X and classify the cancer types. 

In the feature selection layer of CAE in Fig. 2, the original 
features are selected based on this layer's temperature, which is 
tuned using an annealing schedule, as shown in Fig. 3. More 
specifically, the concrete selector layer identifies k important 
features as the temperature decreases to zero, Fig 3b. For 
reconstructing the input, a simple decoder similar to the ones 
associated with a standard AE is used. The temperature 0, of the 
random variable in the selector layer, has a significant impact on 
forming each node's output. Initially, when 0 is high, search space 
is large since it considers a linear combination of all features, as 
shown in Fig. 3(a). In contrast, the selector layer will not be able 
to search all possible combinations of features at low 0, and thus, 
the model converges to a poor local minimum. This means that 
as temperature goes down, a small number of features are 
necessary for stable convergence. Annealing or gradual decrease 
in temperature avoids the model convergence to a poor local 
minimum. The effect of annealing in feature selection is shown 
in Fig. 3(a). For example, at the starting temperature, 0), the 
number of input features is 10, and the number of features to be 
selected is k = 3. At the next epoch, when the temperature is 0)1�, 
the number of possible features reduces to 6. After some epochs, 
when the temperature reaches its lower bound  0)�2#, the number 
of features further reduces to 3, equal to k, the user-specified 
number of features to be selected. Instead of using a fixed 
temperature, a simple annealing scheduling scheme is used for 
feature selection. It starts with a user-defined high temperature 
(0)) and steadily lowers the temperature until it touches the end 
bound (03), by every epoch as follows:  

0
3� 4 0)�
05 0)6 �3 -6 ………………..(2) 
Where,  03 is the temperature at epoch e, N refers to the total 
number of epochs. Adam optimizer, with a learning rate of 0.001, 
was used for all the experiments for CAE. The starting 
temperature of CAE was set to 10, and it ends at 0.01. 

 
 

 
 
Fig. 3: Effect of annealing in reducing search space. (a) An example: at starting temperature 0), the number of input features is 10 and the number of features to be 
selected is k = 3; at the next epoch when the temperature is 0)1�, the number of possible features reduces to 6; after some epochs, when the temperature reaches to its 
lower bound 0)�2#, the number of features further reduces to 3, which is equal to k. (b) Effect of temperature change in reducing the loss while training the concrete 
autoencoder on mRNA expression data to select the desired number of features, k. If the temperature is exponentially decayed (the annealing schedule), the feature 
selection layer converges to informative features with minimum loss. 
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C. Classification 

To check the relevance of the selected features (glycome 
genes) to the origin of 33 different cancers, five classification 
algorithms including Gaussian Naïve Bayes (GNB), K-nearest 
Neighbor (KNN), Random Forest (RF), Support Vector Machine 
(SVM), and Logistic Regression (LR) were used. The dataset was 
split into the train and test set according to a 75/25 ratio to avoid 
overfitting. The numbers of training and testing samples of 33 
cancers are shown in Fig. 1. The training set was used to estimate 
the learning parameters, and the test set was used for performance 
evaluation. The mean accuracy of 10 different runs was reported 
in results where the dataset has been shuffled and split (75/25) for 
every run.  

Four different evaluation metrics have been used to record 
the classification performance, such as accuracy, precision, 
recall, and f1 score. Accuracy is the number of correct predictions 
made by the model over all kinds of predictions made. Precision 
is the number of correct positive results divided by the number of 
positive results predicted by the model. It indicates the predicted 
positive portion of the samples. The recall is the number of 
correct positive results divided by the number of all relevant 
samples. F1 score is the harmonic mean of precision and recall.  

All performance metrics are measured on the predicted labels 
and true labels of independent test samples. The optimal number 
of features are selected based on two criteria: (a) the number of 
features should be as few as possible, and (b) the classification 
accuracy using the selected features should be > 90%.  

 
D. Comparison 

The feature selection capability of concrete autoencoder 
(CAE) was compared with the standard autoencoder (AE). Both 
AE and CAE are unsupervised approaches, but the former 
produces latent features, and the latter produces actual features. 
It is also known that AE performs better, maybe at the highest 
level, since it comes up with a reduced number of latent features 
with maximum variance. The objective of comparing CAE with 
AE is to check how close CAE's performance is to that of AE.  

 
III. RESULTS AND DISCUSSION 

A. Feature Selection and Classification Results 
Finding Optimal k-value: The conditions for optimal feature 

set are (a) the number of features should be as few as possible, 
and (b) classification accuracy using the optimal feature set 
should be > 90%. As shown in Figure 4(a), a series of 
experiments were conducted to find the optimal number of 
features using CAE for classifying 33 different cancers. It is clear 
from this figure that the initial increase in the number of selected 
features from 25 to 100 showed a sharp increase. Beyond this 
point, the increase in performance was not significant. For 
example, to increase the performance from 92% to 93%, one 
needs to increase the number of features from 100 to 200, which 
is not worthwhile. The optimal classification performance for the 
present problem with CAE (accuracy > 90% with the smallest 
number of features) was observed with about 100 features. In 
other words, the optimal k-value for this problem is 100. 

Finding a Stable Set of Features: With the same value of k = 
100, the CAE produces a different optimal subset of 100 features 
in different runs. To get a stable set of features, the model was 
run 10 times with k = 100. Without loss of generality, it can be 
assumed that a gene that appears in more than one run can be 
considered as an important feature. In 10 runs, it was observed 
that 269, 132, 50, and 15 genes appeared in 7 2, 7 3, 7�4, and 7 
5 runs, respectively. The classification performance using these 
four subsets of features are shown in Figure 4(b). The feature sets 
269 (7 2) and 132 (7 3) produced accuracy > 90%. It is 
noticeable that to increase the accuracy from 92% to 94%, one 
needs to increase the number of features from 132 to 269.  In other 
words, to increase the accuracy by 2%, we need twice as many 
features, which is not worthwhile. So, the set of 132 genes that 
appeared in 3 or more runs were considered the stable feature set 
(the gene names are shown in Appendix-A.   

Comparing CAE with AE: To compare CAE performance 
with AE, 132 latent features were generated using AE. For 
completeness, the original feature set of 498 genes was also used 
for classification. Table II shows the performance of five 
classifiers – GNB, KNN, RF, SVM, and LR – in classifying 33 
different cancers. Block A, Block B, and Block C of Table II 
shows the performance of five classifiers using original feature 
set (498 genes), reduced and stable feature set (132 genes), and 
132 latent features.  It is clear from this table that SVM performed 
better with each set of features in terms of four evaluation 
matrices, including accuracy, precision, recall, and f1 score.  It is 
noticeable that the accuracy using the original feature set of 498 
genes was 95%, which indicates that glycome genes carry the 
signature of cancers. But to conduct the wet lab experiment to 
identify the roles of each of these 498 genes is difficult and 
expensive. A reduced and stable set of features are desired to 
design a wet lab experiment. The stable set of 132 genes isolated 
in this study produces an accuracy of 92%, which satisfies the 
conditions for optimal feature set (number of features should be 
as few as possible and accuracy should be > 90%).  132 salient 
features derived from AE show the upper bound of performance, 
94%, for the present problem. The performance of CAE (92% 
accuracy) is pretty close to AE (94% accuracy), which provides 
confidence in explaining the role of glycome genes in the process 
of cancer initiation and progression.      

 
B. Capability of Selected Features  

Figure 5 shows the capability of selected 132 glycome genes 
in identifying the origin of 33 cancers with the t-SNE plot and 
confusion matrix. It is clear from the t-SNE plot that 132 glycome 
genes can distinguish 33 different types of cancer by forming 
distinct clusters. It is also clear from the confusion matrix that 
most cancers were identified with high accuracy except CHOL, 
ESCA, and READ. The number of CHOL samples was very low 
(36 only) compared to other cancers, which might play some role 
in poor performance. Though the number of samples (161 
patients) for ESCA is not low, poor performance could be due to 
its complexity. The rectal adenocarcinoma (READ) was confused 
with colon adenocarcinoma (COAD). Similarly, some of the 
COAD samples were also confused with READ samples.  
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Fig 4: Optimal k-value and stable feature set. (a) Optimum k-value: Mean accuracy at different number of features selected by CAE. The initial increase in the number 
of selected features from 25 to 100 showed a sharp increase in accuracy from 80% to 92%. Beyond this point, the increase in performance was not significant. From 100 
to 200 features, accuracy increased only by 1%, which is not worthwhile. So, 100 features producing 92% accuracy meet the criteria of optimal k-value (number of 
features as few as possible and accuracy > 90%). (b) Stable feature set: Mean accuracy at different number of features selected based on the frequency of a feature 
appeared in 10 runs with optimal k = 100. 132 genes appearing in 7 3 runs produced an accuracy of 92%. To increase the accuracy from 92% to 94% (only by 2%), one 
needs twice as many features (269 genes instead of 132 genes). 132 genes with 92% accuracy meet the optimal criteria ((number of features as few as possible and 
accuracy > 90%). Thus, the stable feature set consists of 132 genes.  

 
TABLE II: Classification performance: Block A: Using original features of 498 glycome genes. Block B: Using 132 glycome genes selected by CAE. Block C: Using 

132 latent features produced by AE. 
 

#features Classifier Mean Accuracy Mean Precision Mean Recall Mean f1 Score 

Block A  
498 

GNB 0.86 (+/- 0.01) 0.84 (+/- 0.01) 0.84 (+/- 0.01) 0.83 (+/- 0.01) 

KNN 0.91 (+/- 0.01) 0.88 (+/- 0.01) 0.88 (+/- 0.01) 0.87 (+/- 0.01) 

RF 0.91 (+/- 0.01) 0.89 (+/- 0.01) 0.85 (+/- 0.01) 0.85 (+/- 0.01) 

SVM 0.95 (+/- 0.01) 0.93 (+/- 0.01) 0.92 (+/- 0.01) 0.92 (+/- 0.01) 

LR 0.94 (+/- 0.01) 0.92 (+/- 0.01) 0.92 (+/- 0.01) 0.92 (+/- 0.01) 

Block B 
CAE 132 (7 3) 

GNB 0.84 (+/- 0.01) 0.80 (+/- 0.01) 0.83 (+/- 0.01) 0.80 (+/- 0.01) 

KNN 0.89 (+/- 0.01) 0.85 (+/- 0.01) 0.85 (+/- 0.01) 0.85 (+/- 0.01) 

RF 0.90 (+/- 0.01) 0.88 (+/- 0.02) 0.83 (+/- 0.01) 0.83 (+/- 0.01) 

SVM 0.92 (+/- 0.01) 0.88 (+/- 0.01) 0.89 (+/- 0.01) 0.88 (+/- 0.01) 

LR 0.92 (+/- 0.01) 0.89 (+/- 0.01) 0.88 (+/- 0.01) 0.88 (+/- 0.01) 

Block C 
AE 132 

GNB 0.83 (+/- 0.01) 0.82 (+/- 0.01) 0.85 (+/- 0.01) 0.83 (+/- 0.01) 

KNN 0.91 (+/- 0.01) 0.86 (+/- 0.01) 0.86 (+/- 0.01) 0.86 (+/- 0.01) 

RF 0.92 (+/- 0.01) 0.89 (+/- 0.01) 0.84 (+/- 0.01) 0.85 (+/- 0.01) 

SVM 0.94 (+/- 0.01) 0.91 (+/- 0.01) 0.90 (+/- 0.01) 0.90 (+/- 0.01) 

LR 0.91 (+/- 0.01) 0.89 (+/- 0.01) 0.84 (+/- 0.01) 0.85 (+/- 0.01) 
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Fig. 5: Capability of selected 132 glycome genes in identifying the origin of 33 cancers. Confusion matrix and visualization of 33 different cancer types. (a) Confusion 
matrix generated using 132 glycome genes from SVM. (b) t-SNE using 132 glycome genes where each dot represents a cancer sample, and each color represents a cancer 
type. 

The reason is that both COAD and READ share many 
common features since the colon and rectum are two parts of one 
large organ. 

 
C. Importance of Selected Features 

Table III shows the distribution of glycome genes before and 
after feature selection by CAE.  
 
TABLE III:  Distribution of glycome genes before and after selection using CAE. 
Total genes: 498 (before) and 132 (after). Accuracy: 95% (before) and 92% 
(after). Remarks: Provide a smaller list of 132 glycome genes capable of 
identifying the origin of 33 cancers with an accuracy > 90%. This list of 132 genes 
could be used to design a wet lab experiment to investigate their role in 
tumorigenesis further. 

Category Before After 
Adhesion Molecule 7 2 
CBP:C-Type Lectin 74 20 
CBP:I-Type lectin 20 7 
Galectin 12 3 
Glycan Degradation 59 17 
Glycosyltransferases 187 54 
Glycoproteins 31 4 
Intracellular protein 
transport 8 1 

Miscellaneous 6 0 
Nucleotide Sugar 
Transporters 57 15 

Proteoglycans 29 7 
Sulfotransferases 8 2 
Total 498 132 
Classification 
Accuracy 95% 92% 

 

There was a total of 498 and 132 genes before and after the 
selection process, respectively. The accuracy of classification 
using 498 and 132 genes was 95% and 92%, respectively (last 
row of the table). The objective of this study was to find as few 
features (glycome genes) as possible with an accuracy > 90%, 
which helps design a wet lab experiment to investigate further the 
role of glycome genes in the process of cancer initiation and 
progression. It is clear from Table III that the number of genes in 
each category has been significantly reduced after the feature 
selection process. This means that glycosylation can be explained 
with a fewer number of genes in each category. For example, to 
explain glycosylation in terms of Adhesion Molecule, one can use 
only 2 genes instead of 7 genes. Similarly, to explain Glycan 
degradation, one can use 17 genes instead of 59 genes. 

 
IV. CONCLUSION AND FUTURE REMARK 
In this study, we developed an in-silico framework to 

identify significant glycome genes related to the origins of 33 
different cancers. A deep learning-based unsupervised feature 
selection algorithm, concrete autoencoder, was used to develop 
the framework. The developed framework successfully identified 
an optimal set of glycome genes related to individual cancers. 
This optimal set of glycome genes could segregate and 
differentiate 33 cancers using expression profiles with an 
accuracy of 92%.  This study accounts for both feature selection 
and identifying the origin of different cancers into its analytical 
methods. These findings highlight the role of glycosylation in 
cancer development and offer subsets of glycome genes in several 
molecular categories that can be investigated further for their 
respective role in cancer-specific malignancy. 

This study considers only cancer patients to identify cancer-
related glycome genes. In the future, the same framework will be 
used for normal samples corresponding to different cancers to 
find the glycome genes related to normal tissues. A comparison 
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between these two sets will help pinpoint the glycome gene 
signatures for cancers. Another avenue of future work will be the 
identification of differentially expressed glycome genes for 
individual cancers, which will help identify the cancer-specific 
glycome gene signatures. 
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Appendix-A: 132 glycome genes in 11 molecular categories 
1. Adhesion Molecule: EMCN, PODXL2 
2. CBP:C-Type Lectin: ASGR2, CD207, CD209, CLEC10A, CLEC11A, CLEC12A, CLEC14A, CLEC1A, CLEC1B, CLEC2L, 

CLEC3A, CLEC4C, CLEC4G, CLEC4M, CLEC5A, MBL2, MRC2, PKD1L2, SFTPA1, THBD 
3. CBP:I-Type Lectin: CD22, ICAM1, MAG, PECAM1, SIGLEC1, SIGLEC6, VCAM1 
4. Galectin: LGALS13, LGALS3, LGALS3BP 
5. Glycan Degradation: ARSD, ARSE, ARSF, ASAH2, GALC, GALNS, GLA, GNS, HEXA, HYAL3, MAN1C1, MAN2A1, 

MAN2B1, NAGA, NEU1, NEU2, SULF1 
6. Glycosyltransferases: ABO, ALG10B, ALG5, ALG6, ALG9, B3GALT1, B3GALT4, B3GNT2, B3GNT3, B3GNT4, B3GNT8, 

B4GALT1, B4GALT3, B4GALT5, CHST12, CHST14, CHST3, CHSY3, CSGALNACT2, DPAGT1, DPM3, DSEL, EXT1, 
EXTL1, EXTL2, FUT11, FUT2, FUT5, FUT8, GALNT12, GALNT14, GALNT2, GALNT3, GALNT7, GALNT8, GALNTL5, 
GCNT4, GLCE, HS3ST3B1, HS3ST6, HS6ST2, LARGE, LFNG, MGAT2, NDST3, PIGH, PIGQ, ST3GAL1, ST6GALNAC5, 
ST8SIA1, ST8SIA3, ST8SIA6, WBSCR17, XYLT1 

7. Glycoproteins: CD164, EMR1, MUC6, UMOD 
8. Intracellular protein transport: COG1 
9. Nucleotide Sugar Transporters: CMAS, GALT, HK1, MPI, PAPSS1, PGM1, PMM1, SLC35B1, SLC35B3, SLC35B4, 

SLC35D2, SLC35D3, SLC35E4, SLC35F3, UGP2 
10. Proteoglycans: CD44, GPC3, PTPRZ1, SDC4, SMC3, SPOCK3, SRGN 
11. Sulfotransferases: SULT1A2, SULT1A3 
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