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Abstract— Background: In the United States, African American 
Males (AAM) have the highest lung cancer incidence and mortality 
rate compared to European American Males (EAM). Cigarette is 
considered the major risk factor for lung cancer, but smoking alone 
fails to interpret the rationale for developing lung cancer between 
AAM and EAM. The higher rates of lung cancer among AAM occur 
even though they have lower smoking rates, smoke fewer cigarettes 
per day, and are less likely to be heavy smokers than EAM. 
Identifying genomic signatures such as key genes that can 
differentiate lung cancers between AAM and EAM will be a 
stepping stone to comprehend the disparity of lung cancer between 
AAM and EAM.  

Method: The gene expression profiles of whole blood samples 
from AAM and EAM patients were used to identify the key genes 
that can differentiate the lung cancers between AAM and EAM. Due 
to the US population's imbalanced nature between AAM and EAM, 
the distribution of samples for the present study is also highly 
imbalanced (AAM: 15 and EAM: 153). Here, we developed a 
computational framework using a deep learning-based unsupervised 
feature selection approach, concrete autoencoder (CAE), which can 
select actual features rather than latent features. First, we showed 
that features such as differentially expressed genes (DEGs) 
discovered by a supervised statistical approach LIMMA could not 
differentiate lung cancers between AAM and EAM. Then we 
showed that the CAE could isolate essential features capable of 
differentiating lung cancers between AAM and EAM.   

Results: The proposed framework using CAE was able to detect 
34 key features/genes, which outperforms all sets of DEGs 
identified using three different thresholds on fold change. Using the 
selected 34 genes, the Random Forest classifier was able to classify 
lung cancers among AAM and EAM with 99% accuracy and only 
one false negative.  

Conclusion: The proposed framework using CAE reveals the 
key genes that can differentiate lung tumors between AAM and 
EAM. These key genes can be used as biomarkers to understand the 
difference in lung cancer development between AAM and EAM. 
This study also showed that the CAE is capable of extracting 
relevant features from a highly imbalanced dataset.  

Keywords—Concrete Autoencoder, Feature Selection, Lung 
Cancer Disparity 

I.   INTRODUCTION 
Lung cancer is considered the second most prevalent 

type of cancer [1] and the leading cause of death in the United 
States [2]. Lung cancer represents approximately 12.7% of 
all cancer cases in the United States, and the African 
American Males (AAM) have the most lung cancer incidence 
and higher mortality rate than European American Males 
(EAM) [1]. Cigarette smoking is regarded as one of the major 
risk factors for lung cancer, but it is noticed that AAM has a 
lower smoking rate than the EAM [3],[4]. So, some other 
factors need to be considered, such as geographic regions, the 
origin of birth, diet, occupations, etc. [3]. Gene expression 
profiles for the tumor cells or whole blood samples from 
cancer patients can help identify the disparities among AAM 
and EAM. 

The work done by Mitchell et al. [5] is relevant to our 
work. But some subtle differences make our research unique. 
They used expression profiles of tumor and normal tissues, 
whereas we used expression profiles of blood samples from 
cancer patients only. They identified key genes using 
statistical methods (ANOVA and t-test), where they 
considered tumor tissue as case and normal tissue as control. 
Besides, they considered both males and females together for 
their research. Here, we used male patients only, and the 
EAM patient was the control, while the AAM patient was the 
case. We used both a statistical approach (identifying DEGs) 
and a deep learning technique to identify key features from 
the dataset. Since the dataset was highly imbalanced, 15 
AAM versus 153 EAM, a supervised algorithm will be 
biased to the larger group. Here, we developed a 
computational framework using a deep learning-based 
unsupervised algorithm, concrete autoencoder (CAE) [6], to 
identify the signature genes that can differentiate the lung 
cancers between AAM and EAM. 

In this paper, first, we used LIMMA, an R package, 
which uses a statistical approach to identify differentially 
expressed genes (DEGs). Second, CAE was used to isolate 
the key genes from the original feature space. Finally, three 
state-of-the-art machine learning algorithms, Support Vector 
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Machine (SVM), Random Forest (RF), Logistic Regression 
(LR), were used to check the capabilities of the discovered 
features to differentiate lung cancers between AAM and 
EAM.  

II. MATERIALS AND METHODS 
The whole blood gene expression profiles of lung cancer 

patients were obtained from the NCBI GEO database with 
accession ID, GSE135304 [7]. The dataset contains 712 
human whole blood samples (311 males and 401 females) 
with the information of their demography, disease types, and 
nodule statuses. As our current hypothesis focuses on the 
male gender, we categorized 311 male samples based on lung 
cancers. We found that only 168 patients (15 AAM versus 
153 EAM) have lung cancer information for male patients. It 
is noticeable that the dataset to be analyzed is highly 
imbalanced. Two approaches were used to isolate the key 
features that can explain the disparity in lung cancer 
development between AAM and EAM: (a) LIMMA, a 
statistical approach, and (b) Concrete Autoencoder, a deep 
learning-based unsupervised approach.  

To check the capability of features selected above in 
differentiating lung cancers between AAM and EAM, three 
state-of-the-art classification algorithms including Support 
Vector Machine (SVM), Random Forest (RF), and Logistic 
Regression (LR) were used. We used Scikit-Learn, an open-
source machine learning library in Python. 5-fold cross-
validation was used for measuring the classification 
performance.  

III. RESULTS AND DISCUSSION 

A. Feature selected by LIMMA 
Table-I shows the number of DEGs for lung cancer in 

AAM compared to EAM. Three sets of DEGs (6, 45, and 317 
genes) were found using three different thresholds on fold 
change, |logFC| � 2.0, 1.0, and 0.5, respectively, with a P-
Value � 0.05. These DEGs were used as features for finding 
the disparity between AAM and EAM, applying three 
classification algorithms, SVM, RF, and LR. 
  
Table I: The DEGs for AAM compared to EAM.  P-Value � 
0.05.  (�: upregulated DEGs; �: downregulated DEGs) 

 |logFC| � 2 |logFC| � 1 |logFC| � 0.5
DEGs  �0; �6 �8; �37 �67; �250 

B. Feature selected by Concrete Autoencoder 
Table II shows the distribution of the number of features 

obtained using two sets of runs, (a) 20 runs to select 317 
features, and (b) 140 runs to select 20 features. For k = 317, 
20 runs selected a total of 6340 features, of which, 5733 were 
unique. Similarly, for k = 20, 140 runs selected 2800 features, 
of which, 2265 were unique.  Finally, the intersection of 
features selected by two sets of runs resulted in 34 features, 
which were considered as significant features. 
Table II: Distribution of the number of features from CAE. 
First set of runs: k = 317 features and i = 20 runs; Second set 
of runs: k = 20 features and i = 140 runs. 

# of features per 
run (k) 

# of runs (i) # of total 
features 

# of unique 
features 

317 20 6340 5733 
20 140 2800 2265 

C. Classification results using the DEGs 
Figure 1 shows the performance of three classification 

algorithms (SVM, RF, and LR) using three sets of DEGs 
(317, 45, and 6 genes). All sets produced the same level of 
accuracy ranging from 94% to 97%. But the results are highly 
biased to the larger group of 153 EAM patients. Of 153 EAM, 
most of them were predicted correctly, and at most, 2 patients 
were predicted wrong. On the other hand, of 15 AAM, 5 to 8 
patients were predicted wrong. 

 
Fig 1. Confusion matrix and corresponding accuracy using DEGs. 
Classification algorithms used: SVM, RF, and LR. a) Results using 317 
DEGs, b) Results using 45 DEGs, and c) Results using 6 DEGs. 

D.     Classification results using the features from CAE 
    Figure 2 shows the classification accuracy, and 

confusion matrix using three sets of features selected from 
two sets of CAE runs, 20 runs with k = 317 and 140 runs with 
k = 20. The conditions for feature selection are: (i) the 
number of features should be as few as possible, (ii) the 
accuracy using the selected features should be > 90%, and 
(iii) the wrong prediction for the smaller group (AAM) 
should be as minimum as possible.  

Feature selection from 20 runs with k = 317: Counting 
genes that appeared in more than 2, 3, and 4 runs resulted in 
72, 7, and 1 gene, respectively. Figure 2 (a & b) shows the 
classification performance using 7 and 72 genes, 
respectively. It is clear from Figure 2a that performance with 
7 genes is the worst since all AAM samples are predicted 
wrong using SVM and RF. On the other hand, 72 genes 
perform the best, 100% accuracy using SVM, but poor results 
using RF (5 out of 15 AAM samples are predicted wrong). 

Feature selection from 140 runs with k = 20: Figure 2c 
shows the confusion matrix using 31-gene set appeared in 
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more than 3 runs. It is clear that the 31-gene set performs way 
better than that of the 7-gene set (2a) and slightly worse than 
the 72-gene set (2b). Since our goal is to select as few features 
as possible, 72 gene-set is high to design a wet lab experiment 
for further investigation. 

Common features between two sets of runs: It is clear 
from Figure 2b and 4c that both sets of runs (20 runs with k 
= 317 and 140 runs with k = 20) have significant features 
capable of differentiating lung cancer between AAM and 
EAM. This observation motivated us to use the common 34 
features between the two sets of runs. 

 
Fig 2. Confusion matrix and corresponding accuracy for three 
classifiers (SVM, RF, and LR) using the features isolated by CAE. a) 
Results using 7 genes: selected from 20 runs with k = 317, each gene 
appearing in more than 3 runs; b) Results using 72 genes: selected from 20 
runs with k = 317, each gene appearing in more than 2 runs c) Results using 
31 genes: selected from 140 runs with k = 20, each gene appearing in more 
than 3 runs. 

 
Fig 3. Confusion matrix and corresponding accuracy using 34 common 
features from two sets of CAE run. 20 runs with k = 317 and 140 
runs with k = 20. 
  

Figure 3 shows the classification performance using 34-
gene set. It is clear that 34 gene-set was able to classify the 
lung cancers among AAM and EAM very well. The whole 
set of 153 EAM samples were predicted correctly by three 
classifiers. Of 15 EAM samples, RF made 14, and SVM and 
LR made 12 correct predictions. Comparing 31-gene set 

performance in Figure 2c, 34-gene set in Figure 3 produced 
better results. Thus, the signature of the 34-gene set can be 
used to develop a wet lab experiment to find the disparity of 
lung cancer between AAM and EAM. The list of 34 genes is 
provided below. 
ACKR1, AIRE, ATP6V0D1, CAMP, CASP1, CCDC125, 
DEFA1B, DYSF, FAM210B, FCGR3B, FRAT2, GNAS, 
ILMN_1693262, ILMN_1762189, ILMN_1827887, 
ILMN_2338997, ILMN_3246805, ILMN_3278879, ITPRIP, 
LINC00173, LOC644936, MUC6, MXD1, NLRP12, POLR3C, 
RNA28S5, RNA28S5, S100P, SERPINA13P, SLC6A15, TDP1, 
TNPO3, UBA52, WARS. 

IV. CONCLUSION AND FUTURE WORK 
We developed a computational framework using a deep 

learning-based unsupervised feature selection algorithm, 
Concrete Autoencoder (CAE), to identify the key genes 
related to the disparity in lung cancers between AAM and 
EAM. This study shows that whole blood samples carry the 
signature of health disparity in lung cancer between AAM 
and EAM.  
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