
2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-5386-5488-0/18/$31.00 ©2018 IEEE 2713

Graph Theoretic Concepts as the Building Blocks for 
Disease Initiation and Progression at Protein Network Level: 

Identification and Challenges 

Ananda Mohan Mondal* 
School of Computing and 

Information Sciences 
Florida International University 

Miami, USA 
amondal@fiu.edu  

Jasmine Carson  
Department of Mathematics and 

Computer Science 
Claflin University 
Orangeburg, USA 

jacarson50@gmail.com  

Cornelia Ada Schultz 
Department of Mathematics and 

Computer Science 
Claflin University 
Orangeburg, USA 

Cornelia.ada.schultz@gmail.com 

Raihanul Bari Tanvir  
School of Computing and 

Information Sciences 
Florida International University 

Miami, USA 
rtanv003@fiu.edu  

Markea Sheppard 
Department of Mathematics and 

Computer Science 
Claflin University 
Orangeburg, USA 

markeasheppard@gmail.com  

Tasmia Aqila 
School of Computing and 

Information Sciences 
Florida International University 

Miami, USA 
taqil001@fiu.edu  

Abstract --- Protein networks that mirror the 
transitions between disease stages hold the key to early 
diagnosis and make it easy to understand the essential 
mechanisms of disease progression at protein network 
level. But, identifying critical transitions between disease 
stages and corresponding protein networks during the 
initiation and progression of a complex disease like 
cancer is a challenging task. This preliminary work 
identifies the possible building blocks for disease 
initiation and progression at the protein network level 
based on biological rationale that a group of proteins are 
localized at a specific subcellular location to accomplish 
a function, which could be beneficial to human body or 
adversarial to cause a disease. We discovered that three 
graph-theoretic concepts – i) Clique-like structures, ii) 
Bipartite-like structures, and iii) Diffusion Kernels could 
be possible building blocks for disease progression at the 
protein network level.  Using these building blocks, 
disease progression can be modeled as an event-schedule-
like structure, meaning that each of the disease stages 
corresponds to an event, where each event is completed 
by a set of proteins by forming a clique-like structure. 
Once an event or disease stage is completed by a group 
of proteins, disease signals go to the next group of 
proteins to cause the next event or disease stage and so 
on. The transfer of signals can be represented by 
bipartite-like structure and diffusion kernels can be used 
to find the strength of disease signals. Further study is 
required to fully explore the application of these building 
blocks to analyze the disease progression.  

Keywords --- bipartite graph, clique, diffusion kernel, 
disease progression, protein network. 

I. INTRODUCTION 

Studies on disease progression [1-5] for different 
diseases using time-series gene expression profiles on 
human and mouse genomes show that there exists a 

dynamical network biomarker (DNB), a group of 
proteins whose behavior, unlike other groups of 
proteins, changes at the pre-disease state of a three-
state (normal, pre-disease, and disease) model for 
disease progression. The major limitation of studies 
based on DNB is that the researchers hypothesized that 
disease progression is composed of three states only - 
normal state, pre-disease state, and disease state. In 
reality, disease progression may have more than three 
states. According to the sixth edition of the cancer 
staging system by American Joint Committee on 
Cancer (AJCC), the disease state of colon cancer has 
7 different stages (I, IIa, IIb, IIIa, IIIb, IIIc, and IV) 
[6]. Similarly, lung cancer also has 7 stages (Ia, Ib, IIa, 
IIb, IIIa, IIIb, and IV) in the disease state devised by 
International System for Staging Lung Cancer [7]. The 
second limitation of the studies based on the three-
state model is that, in the disease state, the member 
proteins of a DNB behave normally like the rest of the 
proteins in the network. Thus, it is clear that DNBs fail 
to differentiate among different stages of the disease 
state.  

Our work is motivated by the prospective 
applications of protein-protein interaction (PPI) 
networks or, simply, protein networks to diseases [8]. 
Ideker and Sharan [8] enumerated four different 
applications of protein networks to  diseases: i) 
identifying new disease genes, ii) studying the 
network properties of disease genes, iii) classifying 
diseases based on protein network, and iv) identifying 
disease-related subnetworks. Genome-wide protein-
protein interaction (PPI) networks come with rich 
information about the dynamic processes such as the 
behavior of genetic networks in response to DNA 
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damage [9] and exposure to arsenic [10], the 
prediction of protein function [11], genetic interaction 
[12], protein subcellular localization [13-18], the 
process of aging [19], and protein network biomarkers 
[20, 21]. Based on these literatures, it is quite 
reasonable to claim that the signature of disease 
progression, which is dynamic, is also left behind in 
static PPI network. In this paper, we used PPI network 
as the backbone for discovering the building blocks for 
disease initiation and progression. We leverage the 
motivation of a group of proteins to be localized at a 
specific subcellular location to accomplish a common 
goal or function which is similar for a group of 
proteins to be involved in initiating a disease and 
subsequent progression from one stage to the next. 
Limitations of Computational Studies 

According to the supplementary document of [2], a 
DNB network is neither a set of disease genes nor a 
driving factor. It only provides early-warning signals 
of the pre-disease state based on its dynamical features 
from the observable data such as time-series gene 

expression. The second limitation of the studies based 
on the three-state model is that, in the disease state, 
according to [1-5], the member proteins of a DNB 
behave normally like the rest of the proteins in the 
network. The third limitation is that the disease state 
itself has more stages; for example, both colon cancer 
and liver cancer have seven stages. This means that 
DNBs fail not only to identify the genes/proteins that 
initiate the disease but also genes/proteins responsible 
for each stage of disease progression. 

II. HYPOTHESIS AND CHALLENGES  

To overcome the limitations of the state-of-the-art 
computational studies on disease progression, one 
needs to have a network biomarker that is capable of 
representing the whole disease progression from its 
initiation. This is possible if the network biomarker 
has an event-schedule-like structure, meaning that 
each of the disease stages corresponds to an event, 
where each event is completed by a set of proteins as 
shown in Fig. 1. 

 

 

Fig. 1a represents the hypothetical event-schedule-
like protein network depicting seven stages (I, IIa, IIb, 
IIIa, IIIb, IIIc, and IV) of colon cancer.  Once the green 
event (Stage I) is completed by the green group of 
proteins, signals go to the yellow group of proteins to 
cause the yellow event (Stage IIa) and to the purple 
group of proteins to cause the purple event (Stage IIb). 
Once the blue and purple events are complete, signals 
go to the orange group of proteins to cause the orange 
event (Stage IIIa), to the brown group of proteins to 
cause the brown event (Stage IIIb) and to the olive 
group of proteins to cause the olive event (Stage IIIc). 
Finally, signals go to the red group of proteins to cause 
the red event (Stage IV). For an event, a group of 
proteins works together forming a clique or clique-like 
structure and transfer of signals from a stage to the 
next form a bipartite graph. It is noticeable that the 
whole disease progression represented by multiple 

clique-bipartite graphs (Fig. 1a) can be collapsed into 
a single clique-bipartite-like graph as shown in Fig. 
1b. This phenomenon leads to the algorithmic 
challenge of identifying the most likely event-
schedule-like structure for disease progression given a 
protein network for a disease. 

III. METHODOLOGY 

Datasets Preparation: Two sets of data, namely i) 
list of biomarkers or single protein biomarkers (SPBs) 
and ii) protein-protein interaction data are required for 
identifying protein subnetwork biomarkers for a 
disease. The list of biomarkers, 84 key genes 
commonly involved in the dysregulation of signal 
transduction and other normal biological processes 
during disease, is obtained from SABiosciences of 
Qiagen [22]. Genome-wide PPI networks for human 
are obtained from STRING database [23]. Protein 
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subcellular locations, needed to annotate the proteins 
of protein network biomarker, are obtained from the 
cellular components of GO (Gene Ontology) database 
[24]. The details of cleaning these data can be found in 
[21].  

Original PPI dataset, downloaded from STRING 
database version 9.0, contains 3,281,414 PPIs. For the 
present study, direction of interaction is not important. 
After removing direction and some erroneous data 
(860 in total: some are missing scores, some do not 
conform to STRING names etc.), final dataset contains 
1,640,129 PPIs with 18,595 proteins. 

STRING PPIs do not come with official protein 
names but disease proteins procured from Qiagen [22] 
are in official protein names. A mapping between 
STRING and official protein names is required. 
Another file from STRING database with GO 
annotation contains both STRING and official protein 
names, which is used as the mapping file. Original 
mapping file contains 17919 unique records. After 
cleaning some erroneous data (some protein names are 
in numbers i.e., not in official protein names), left with 
17839 unique records. Finally, STRING PPIs are 
converted to PPIs in official protein names and 
working network is composed of 1,568,065 PPIs and 
16,614 proteins. So, on an average, there are 94 
interactions per protein. PERL program was used to 
clean the data. 

Constructing Protein Network Biomarker: The 
disease genes obtained from Qiagen were overlaid on 
top of PPI network obtained from STRING database 
to construct the protein network biomarker for a 
disease. 

Filtering Proteins Using Cytoscape: Cytoscape 
[25], an open-source software, is a tool for analyzing 
biomolecular networks. Protein network biomarker 
(list of PPIs) obtained above and a list of protein 
annotated with subcellular locations are loaded in 
Cytoscape. Then a filter was created by grouping the 
proteins based on their locations. The rationale of 
using this approach is that the group of proteins 
localized at the same subcellular location is more 
likely to interact with each other to cause a function, 
which could be beneficial to our body or adversarial to 
initiate a disease. 

IV. RESULTS AND DISCUSSIONS 

Clique and Bipartite Graph as Building Blocks: Fig. 
2 shows the filtered proteins as grouped by locations 
from a protein network biomarker for liver cancer. It 
is clear that the groups of proteins at different locations 
form two distinct network structures, namely, clique-
like structure and bipartite graph. The largest group 
(group-1) of 21 proteins is located at Cytoplasm. The 

2nd, 3rd, and 4th groups of proteins are located at 
Nucleus, Plasma Membrane, and Extracellular, 
respectively.  

 
First, intra-group proteins form a clique-like 

structure, Fig. 2(d, e), meaning they form a cluster in 
the protein network and interact with each other, 
usually, to accomplish a function. Second, each group 
of proteins is connected with other groups by forming 
a bipartite-like structure, Fig. 2c. Four groups of 
proteins together form a clique-bipartite-like structure 
composed of four clique-like and six bipartite-like 
structures among themselves, as isolated in Fig. 2b.  

Usually, proteins at a location, work together as a 
group, are responsible for a specific function or event 
to occur, maybe a specific disease stage. The bipartite 
structure between two groups of proteins at two 
different locations can be thought of as cross-talks or 
the flow of signals between two groups or events or 
disease stages. These together with the literatures 
mentioned in introduction motivate the authors to 
come up with the hypothesis that different stages of a 
disease or whole disease progression process can be 
represented in terms of clique-like and bipartite-like 
structures at the protein network level. Assumption-1: 
Each of these clusters of proteins or clique-like 
structures corresponds to one disease stage, which can 
also be thought of as an event. Since the disease is a 
complex phenomenon, the formation of a clique-like 
structure representing a disease stage should not be 
based on location only. Other factors, both genetic and 
epigenetic, such as gene expression, mutation, DNA 
methylation, histone modification, and miRNA 
dysregulation should be accounted for. Assumption-2: 
Once an event is complete or a disease stage is 
complete by a cluster of proteins, they send the signal, 
by forming a bipartite graph, to the next group of 
proteins to start the next event or next disease stage 
and so on. Assumption-3: The signal or potential to 
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cause a disease associated with individual 
gene/protein will be evaluated considering both 
genetic and epigenetic factors mentioned in 
assumption-1. 

Diffusion Kernel as the Building Block: We 
discovered two possible building blocks, clique-like 
structure and bipartite graph, for disease progression 
based on protein localization. In case of actual disease 
initiation and progression, the formation of clique-like 
structures and bipartite-like structures will be based on 
disease-causing factors/signals both genetic (gene 
expression and mutation) and epigenetic (DNA 
methylation, histone modification, and microRNA 
dysregulation). In a genome-wide PPI network, there 
will be a lot of clique-like and bipartite-like structures. 
The overarching question is – how to find clique-like 
and bipartite-like structures that are related to a 
specific disease given the disease-causing 
factors/signals associated with each protein of the 
genome-wide PPI network? To address this question, 
the factors and signals can be thought of as potentials 
that can travel/diffuse in any random direction in a 
graph or protein network.  

A diffusion kernel, explained later, on a protein 
network is equivalent to a random walk on a graph 
[26]. The kernel values are used by different 
investigators as a measure of information flow 
between two proteins in a network [11-18]. So, a 
diffusion kernel can be considered as the 
representation of flow of disease signal between 
proteins and the kernel value between two proteins can 
be considered as the strength of this signal. An 
appropriate threshold on kernel values can be used to 
identify the edges that will form possible clique-like 
structures responsible for different stages of a disease 
including initiation as well as bipartite-like structures 
among the identified clique-like structures.  The 
rationale for using some threshold on kernel values is 
also evidenced from [27], where the authors used a 
threshold on kernel values in identifying the missing 
connections in a protein network biomarker.  

Diffusion Kernel on a Protein Network: Diffusion 
kernel is a computational framework that is based on 
the physical phenomenon of gas diffusion in a 
medium, which is also equivalent to the Computer 
Science concept of random walk on a graph [26].   PPI 
network or protein network is a graph where each node 
represents a protein and a connection or an edge 
between two nodes represents the existence of an 
interaction between two proteins. A genome-wide PPI 
network comes with rich information about the 
signature of the disease process [8], protein functions 
[11], genetic interaction [12], protein subcellular 
localization [13-18], etc. The randomness of the flow 

of this information from one protein to another is 
hidden inside the complex structure of the PPI 
network, which makes it difficult to decipher this 
information. A diffusion kernel, since it is based on 
random walk on a graph, provides a suitable 
computational framework to extract meaningful 
biological information from the PPI network. 
Application of a diffusion kernel provides improved 
results compared to the state-of-the-art methods for 
predicting protein functions [11], genetic interaction 
[12], and protein subcellular localization [13-18].  
These factors motivate using a diffusion kernel to find 
the strength of disease signal between two proteins in 
a protein network. 

The formal definition of diffusion kernel on a PPI 
network [26], Fig. 3a, corresponds to a random walk 
with an infinite number of infinitesimally small steps. 
In the formula of Fig. 3a, I is the identity matrix, � is 
the diffusion constant,  � is a Laplacian matrix, and �� 
is the number of interaction partners of protein��. Fig. 
3b shows an example of a protein network and Fig. 3c 
is the corresponding kernel matrix. 

 
A diffusion kernel generates edge weights 

(interpretable as similarity) between two proteins of all 
possible protein pairs as seen in Fig. 3c, which is based 
on a global perspective of the network. For example, 
based on the direct use of a graph, proteins with the 
same shortest path distance will have the same 
similarity, while a diffusion kernel will produce a 
different similarity. This property makes the diffusion 
kernel perform better than the direct use of a graph. 
For example, from the protein P1, the green proteins 
(P9 and P10) at the shortest path distance of 3 (Fig. 3b) 
will have the same similarity value of 1/3 (inverse of 
distance) with the protein P1, but the diffusion kernel 
produces different values of similarity (P9: 0.057and 
P10: 0.050), as seen in Fig. 3c. Similarly, the diffusion 
kernel produces different values of similarity for the 
brown proteins at the shortest path distance of 1 as well 
as for the yellow proteins at the shortest path distance 
of 2. 
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Big Data and Precision Medicine Perspective: 
Though the protein network (for example – 84 nodes 
and 1900 edges) for a disease is small in size, finding 
the most likely event-schedule-like structure 
representing disease progression is combinatorial or 
complex in nature, which makes this problem a big 
data problem. At the same time, any of the 
combinations (a specific event-schedule-like 
structure) can be related to a specific patient, which 
could be utilized for designing the right medicine and 
right dose for a specific patient. An event-schedule-
like structure that matches the disease-causing 
parameters for a specific patient both genetic (gene 
expression and mutation) and epigenetic (DNA 
methylation, histone modification, and miRNA 
dysregulation) will be used for representing actual 
model for the disease progression for that person. 

 Fig. 4c shows a clique-bipartite-like structure 
developed from a protein network for breast cancer 
composed of 84 proteins and 1900 PPIs using the two-
color technique [28]. Using breadth-first-search 
(BFS), Fig. 4a, and depth-first-search (DFS), Fig. 4b, 
a network can be colored using only two colors such 
that any two adjacent nodes will have different colors. 
In Fig. 4, A and B represent the two colors; thus, 
proteins in alternate levels are designated as A and B.  

 

 
Two sets of proteins, set A and set B in Fig. 4c, 

representing clique-bipartite-like structure, can be 
obtained using both BFS and DFS algorithms. Since 
any protein can be the root node, a maximum of 168 
(84x2) different clique-bipartite-like structures can be 
generated for the given protein network. 

 Challenge-1: The desired single clique-bipartite-
like structure representing the collapsed network for 
disease progression could be any of 168 different 
single clique-bipartite-like structures. Challenge-2: 
Once the single clique-bipartite-like structure 
representing the collapsed network for disease 
progression (Fig. 1b) is identified, it needs to be 
unfolded to represent the event-schedule-like structure 
(Fig. 1a) for the progression of disease. These two 
challenges, which are combinatorial in nature, make 
this problem a big data problem. 

V. CONCLUSION AND FUTURE REMARKS 

This paper discovered three graph theoretic concepts – 
clique-like structures, bipartite-like structures, and 
diffusion kernels – that can be used as the building 
blocks for disease progression from stage to stage 
including initiation. Biological rationale that a group 
of proteins are localized at a subcellular compartment 
to accomplish a specific function is used in 
discovering cliques or clique-like structures to 
represent a disease stage. Cross-talks among these 
clique-like structures are used in discovering bipartite-
like structures as the second building block. Bipartite-
like structures represent the transfer of disease signals 
from one stage to the next. Finally, the physical 
phenomenon of gas diffusion is used to discover the 
third building block, diffusion kernels, which 
represent the strength of disease signals to be 
transferred from one stage to the next. Further 
experiment is required for validating these building 
blocks. 
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