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Abstract. One in three people with diabetes develops diabetic foot ulcers 

(DFUs) during their lifetime, which is a major risk factor for amputation and 

mortality.  Optical imaging techniques have been developed to determine the ex-

tent of oxygenation to these DFUs, which is vital to assessing DFU wounds.  

Herein, a machine learning approach was implemented to label different skin 

tones to eventually correct the tissue oxygenation maps.  We developed a skin 

tone benchmark dataset of 9,000 samples and a machine learning framework to 

represent this dataset in a reduced dimension of 20 features, which could subse-

quently be incorporated into our smartphone-based optical imaging device devel-

oped for DFU assessments.  This allows our technology to be applicable across 

different racial/ethnic groups of varying skin tones. 

 

Keywords: Deep learning, Diabetes foot ulcer, Feature selection, Fitzpatrick 

skin tone, smartphone-based application. 

 

1 Introduction 

Diabetes is one of the major global health problems affecting public health and so-

cio-economic progress [1]. The severity of diabetes has grown much in the last twenty 

years [2]. In recent days, diabetes has been considered a silent pandemic, even deadlier 

than COVID-19 [3]. Diabetes is responsible for a high mortality rate due to contagions, 

cardiovascular disease, stroke, chronic diseases, and cancer [4, 5]. Particularly diabetes 

foot ulcer (DFU) is one of the major and common difficulties of patients with diabetes, 

and it is associated with disability and morbidity along with impairment of life [6, 7]. 

One in three people with diabetes develops DFU sometime during their lifetime [8]. 

DFUs may lead to complications in diabetic people, even death [9]. Though not all 

physicians can treat DFUs, it is extremely necessary to have some knowledge to per-

form an initial evaluation by addressing three major concerns:   debridement, offload-

ing, and infection control [10]. But due to the global pandemic, COVID-19, DFU care 

has been disrupted [11]. So, it is necessary to think about an alternative treatment such 

as at-home point-of-care (POC) rather than visiting clinics. Assistive technology with 

artificial intelligence (AI) may play a vital role in mitigating the risks due to DFUs.  

Recent studies [12, 13] showed that a smartphone-based device could measure tissue 

oxygenation. But it does not account for variations in skin tone or pigmentation of var-

ious racial groups with DFUs, wound tissue characteristics, and foot curvature to obtain 
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accurate tissue oxygenation measurement. Researchers found disparities in the inci-

dence of DFUs among Caucasians and other races, such as African Americans, Hispan-

ics, and Native Americans, depending on their skin tones [14]. Thus, our smartphone-

based device needs to determine these skin tones and account for the melanin concen-

tration differences during tissue oxygenation measurements.   Hence, machine learning 

algorithms are implemented to classify the skin tones in the current study before cor-

recting for the tissue oxygenation maps.    

Here, we developed a benchmark dataset for skin tone types and a machine learning 

framework to identify the salient features of different skin tone types. In our future 

work, the developed ML framework will be incorporated into a smartphone-based de-

vice so that it can generate patient sample data annotated with both DFU and skin tone 

type.  

The people’s skin tone can be divided into six groups (I- VI), where group I is the 

lightest skin and group VI is the darkest, known as Fitzpatrick skin tone (FST) [15]. 

Classifying the skin tone using a smartphone by applying machine learning or deep 

learning algorithms [16] from images captured may minimize the human error of the 

clinicians and make the overall process automated. But an image has many pixel values, 

which are considered features.  Processing a large number of features to classify skin 

tone is computationally expensive. Rather, identifying the key features, a subset of the 

most informative features, from the images and using only those features for classifying 

skin tone is more efficient than using all the features or pixels. In this study, we applied 

five state-of-the-art machine learning algorithms, Least Absolute Shrinkage and Selec-

tion Operation (LASSO) [17], Multi-Cluster Feature Selection (MCFS)[18], Random 

Forest (RF)[19], Support Vector Machine with Recursive Feature Elimination (SVM-

RFE) [20], Unsupervised Discriminative Feature Selection (UDFS) [21], and a deep 

learning algorithm Multi-run Concrete Autoencoder (mrCAE) [22], which are capable 

of identifying the important set of key features. To check the importance of the identi-

fied key features, we used a machine learning algorithm, SVM, to classify skin tone 

types. The classification performance was used to measure the importance of the key 

features. Our long-term goal is to establish a smartphone-based application to report 

both DFU and skin types by capturing the images of DFU wounds. 

 

 

2 Methodology 

2.1 Dataset Generation and Processing 

Fig. 1 outlined the process of dataset generation and processing for Fitzpatrick skin 

tone types (I-VI).  

Data generation. The color images of 10 frames of Fitzpatrick scale sticker consist-

ing of six skin tone types I-VI were taken at three ambient light levels – LOW, 

MEDIUM, and HIGH. Fifty regions of interest (ROIs) were randomly generated as 

10×10-pixel regions for each skin type (I-VI), across each frame (1-10), and for each 

light level. 

Data processing: Each ROI is a sample labeled with the corresponding skin type. 

The samples were uniformly distributed across six skin types each having 1,500 (50 

ROIs/frame x 10 frames/light condition x 3 light conditions)) samples, thus generating 

a total of 9,000 samples. Each sample with 10×10 pixels of 3 channels (R, G, B) was 

flattened to make 300 features. So, the final dataset used for the feature selection algo-

rithm consists of a matrix of 9000 samples × 300 features. 



Fig. 1. Dataset generation and pro-

cessing. (a) Data generation: Color im-

ages of 10 frames of FST sticker were 

taken at three ambient light level – LOW, 

MEDIUM, and HIGH. (b) Data Pro-

cessing: Each ROI of 10x10 pixels rep-

resents a sample with 300 (10x10x3) fea-

tures labeled with the corresponding skin 

tone type (I-VI). 

 

2.2 Feature selection using machine learning and deep learning algo-

rithms 

To represent the skin tone dataset in a reduced dimension, we explored six feature 

selection algorithms. Fig. 2 shows the feature selection framework and evaluation of 

the performance of feature selection algorithms. Five algorithms were machine learn-

ing-based, including LASSO, MCFS, RF, SVM-RFE, and UDFS, and one deep learn-

ing-based, Concrete Autoencoder (CAE) [23]. LASSO, RF, and SVM-RFE are fre-

quently used embedded feature selection algorithms. The other three – CAE, MCFS, 

and UDFS are unsupervised feature selection algorithms. The machine learning algo-

rithms were implemented using the Scikit-Learn [24] framework, and CAE was im-

plemented using a deep learning framework named Keras [25]. 

 
Fig. 2. Feature Selection Framework 

for Discovering Salient Features for Skin 

Tones. Input: Skin tone dataset of 9,000 

samples (ROIs from images) with 300 fea-

tures. Six feature selection algorithms were 

used for analysis. The selected features were 

used in classifying skin tone types to check 

the performance of feature selection algo-

rithms. 

 

Concrete Autoencoder (CAE) is a variation of Autoencoder (AE). But the main 

difference between CAE and AE is that CAE finds a reduced set of most informative 

actual features, whereas AE derives a new set of reduced features. A CAE consists of 

a single encoder layer, also called the feature selection layer, and decoder layers, as 

shown in Fig. 3. 
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Fig. 3. Architecture of concrete autoencoder. The 

encoder layer is the feature selection layer. The working 

mechanism of concrete autoencoder is similar to autoen-

coder. But the difference is that feature selection layer 

captures the salient features whereas autoencoder cap-

tures the latent features. 

 

The task of the feature selection layer is to find 

a subset of (k) actual features in a stochastic man-

ner from the original set of features (FST skin tone dataset with 300 features in this 

study). On the other hand, decoder layers try to reconstruct the original features using 

only k number of features chosen by the feature selection layer. The detailed algorithm 

of this method is discussed in [23]. Temperature and mean-max probability (mean of 

maximum probabilities of the selected features) play a vital role in selecting the most 

meaningful k features from the original set. Every node in the feature selection layer 

assigns a probability value for each feature and selects the feature with the maximum 

probability. Temperature is a hyperparameter applied to the logits, which affects the 

final probabilities from the SoftMax output [26]. The lower the temperature, the higher 

the model confidence (i.e., selecting a stable subset of features), as shown in Fig. 4. 

On the other hand, mean-max probability helps make the model confident when the 

mean-max probability value is high, Fig. 4. So, the main task of these two hyperpa-

rameters is to make the model confident. One disadvantage of CAE is that it selects 

different meaningful k features in different runs. 

 
Fig. 4. Characteristic curve of 

concrete autoencoder. X-axis repre-

sents the number of epochs. Y-axis has 

various representations. Green: tem-

perature [range: 10 to .01]. Yellow: 

mean-max probability [threshold >= 

0.998]. Blue: training loss. Red: vali-

dation loss. Purple: number of unique 

features. The number of features (k) 

was set to 20. 

 

Recent studies [22, 27] pro-

posed a multi-run concrete autoencoder (mrCAE) to identify a stable set of features by 

running CAE multiple times and then pick up the most frequent k features, which are 

considered significant features. The procedure and mechanism of mrCAE are de-

scribed in [22]. In this study, we used the same technique (mrCAE) to identify signif-

icant features or pixels from the original data with 300 pixels.  

Hyperparameter Tuning and Characteristic Curve for CAE: Grid-search ap-

proach was used to tune the number of epochs and learning rate. We used the same 

value of temperatures (starting from 10 and ending at 0.1) as used in [23]. Our analysis 



5 

showed that the model with a learning rate of 0.001 produces a mean-max probability 

of 0.998 for the present dataset while the number of epochs is around 1,000, as shown 

in the characteristic curve, Fig. 4.  The characteristic curve, as demonstrated by 

Mamun et al. [22], is a way of showing that the values of tuned hyperparameters are 

optimal.  The characteristic curve shows that the unique number of features was ini-

tially unstable. But, with the decrease in temperature, the mean-max probability in-

creases, meaning the model becomes more confident in selecting unique features, thus 

producing a stable convergence in training and validation losses. 

The dataset was split into the train and validation sets according to the 80/20 ratio 

maintaining the distribution of classes to avoid overfitting for all the six algorithms 

used in this study. The training set was used to estimate the learning parameters, and 

the validation set was used for performance evaluation. 

2.3 Feature selection  

Machine learning-based feature selection algorithms (LASSO, MCFS, RF, SVM-

RFE, UDFS) were run for a single time, as they selected the same set of features in 

each run. On the other hand, we ran the deep learning-based feature selection algo-

rithm, mrCAE, 10 times to get a meaningful set of features since it produces different 

sets of features in different runs due to its stochastic nature. We considered the features 

significant and meaningful that appeared the most (higher frequency) in different runs 

[22]. 

2.4 Performance Evaluation of Feature Selection Algorithms 

To check the importance of the features selected by six algorithms, i.e., the feature 

selection performance, we used the selected features to classify six skin tones using a 

support vector machine (SVM), Fig. 2. The hyperparameter tuning for SVM was con-

ducted using Grid-Search. Various combinations of parameters, C (adds a penalty for 

each misclassified datapoint; if ‘C’ is small, decision boundary of large margin is cho-

sen with more misclassified datapoint) and the kernels (linear, poly, RBF, or sigmoid) 

were used while classifying using SVM. 5-fold cross validation was used to measure 

the classification performance. We made sure that in each of the folds, the ratio of 

training and validation for each of the labels remained the same (80/20 split for each 

skin tone). The classification performance was evaluated using four metrics: accuracy, 

precision, recall, and f1-score. 

 

3 Result 

3.1 Optimal Set of Features 

We ran six feature selection algorithms, including LASSO, MCFS, RF, SVM-RFE, 

UDFS, and mrCAE, to select five subsets of k features (k = 5, 10, 20, 30, and 40 

features) from the original set of 300 features. We classified the skin tone dataset using 

the selected features with the support vector machine (SVM) classifier. Fig. 5 shows 
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the plot of classification accuracy using five subsets of features selected by each of the 

six feature selection algorithms. We noticed that the accuracies of all the algorithms 

increased with the increase of k up to 20. But the increase was insignificant with k > 

20. Thus, we chose 20 as the optimal number of features. 

 
Fig. 5. Selecting the optimal set of 

features. Accuracy with different sub-

sets of features selected by six feature se-

lection algorithms – LASSO, MCFS, 

RF, SVM-RFE, UDFS, and mrCAE, are 

plotted against the number of selected 

features. 

 

3.2 Evaluation Results 

We employed two approaches to evaluating the significance of the optimal set of 

features, i.e., the performance of the feature selection algorithms. Approach-1: Clas-

sification performance of the selected features in classifying skin tone dataset into six 

classes (I-VI). Approach-2: Capability of the selected features in clustering skin tone 

dataset into different skin tone types using t-SNE [28].  The significant 20 features 

selected from the six algorithms were used for evaluation.  

Evaluation based on classification performance. Fig. 6 shows the accuracy, 

precision, recall, and f1 score for LASSO, MCFS, RF, SVM-RFE, UDFS, and 

mrCAE. All the scores are very similar for the six algorithms. But SVM-RFE had a 

slightly better score than other feature selection algorithms. The maximum classifi-

cation accuracy was 99.98% (SVM-RFE), and the minimum was 98.91% (LASSO). 

The scores suggest that the differ-

ences in the scores are not signifi-

cant.  
Fig. 6. Evaluation of the 20 se-

lected features. Six set of 20 features 

identified from six different algorithms 

were used for classification. Accuracy, 

precision, recall and f1-score were used 

as evaluation metrics. 

 

Evaluation based on t-SNE plots.  We used t-SNE to cluster the samples using all 

the features and the selected 20 features from mrCAE. Fig. 7(a) shows distinct clusters 

for all the different Fitzpatrick skin tones using all the features. All skin tones have 

more than one cluster because of the light levels (low, medium, and high). Similar 

clusters were observed using the significant 20 features derived from mrCAE, Fig 7(b). 

We also noticed that all the six sets of 20 features derived from six algorithms pro-

duced similar clusters as the original. It is clear from the t-SNE plots that all the 



7 

algorithms could identify the most meaningful 20 features from the original data with 

300 features. 

It is noticeable from Fig. 7(b) that skin tones V and VI have three, and the other 

types have two distinct clusters. These results are due to the three different light con-

ditions - LOW, MEDIUM, and HIGH. As skin tones, V and VI are the darkest com-

pared to the other four (I-IV), mrCAE captured salient features of samples in all three 

light conditions. In the latter case, the LOW- and MEDIUM-light samples were com-

bined into one cluster. So, it is clear that mrCAE can also identify features at a more 

granular level. The same behavior is observed in the case of the other five feature 

selection algorithms (not shown). 

 
Fig. 7. t-SNE 

plots for cluster-

ing. (a) t-SNE plot 

using all the fea-

tures. (b) t-SNE 

plot using only 20 

significant fea-

tures selected by 

mrCAE.  Both sets of features (all 300 and 20 significant features) produced the 

similar clusters.  

 

4 Discussion 

Our hypothesis was that a small subset of salient features would be able to represent 

the FST skin tone dataset and classify the same into six skin tone types with high 

accuracy. To test the hypothesis: first, we developed a benchmark dataset for FST skin 

tone types; second, we developed a machine learning framework to represent the skin 

tone dataset using a fewer number of salient features.  

We used three embedded and two unsupervised machine learning-based and one 

deep learning-based feature selection algorithms to identify the salient features from 

FST skin tone images. We ran all the algorithms once as the selected features were 

reproducible except CAE. As CAE produces different sets of important features in 

different runs, we ran CAE 10 times (called mrCAE) and identified the most frequent 

features as the significant ones. Ten runs of CAE with k equal to 20 (number of se-

lected features) produced 200 features. We picked the most frequent 20 features whose 

frequency ranges between 6 (maximum) to 2 (minimum). Then a classifier, SVM, was 

applied to classify the FST skin tones using the six sets of 20 salient features. The 

selected 20 features produced high accuracies ranging between 98.91% (with LASSO-

derived features) to 99.98% (with SVM-RFE-derived features). The reason for such 

high accuracies could be because the generated data was too ideal since we used stick-

ers for FST to generate the data.  

The t-SNE plots using selected 20 features showed that the two darkest skin tones 

(Types V and VI) produced three clusters corresponding to samples with low, medium, 
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and high light levels. Whereas other skin types (lighter types: I – IV) produced two 

clusters, one for the samples with high light level and the other for the combined sam-

ples with low and medium lights. Thus, the selected 20 features can distinguish the 

skin tones not only into six skin tone types but also into granular levels. These results 

also suggest that we should use the same light condition for generating all the data, 

preferably “HIGH” light condition, to ensure that six skin tones produce six distinct 

clusters, each representing a single skin tone. 
 

5 Conclusion and Future Remarks 

This study represents a preliminary experiment and observation of a long-term goal 

to establish a smartphone-based application to report DFU and skin types by capturing 

the images of DFU wounds. This study may help clinicians design appropriate treat-

ment strategies for an individual patient with confidence. Using the whole images cap-

tured by a smartphone for classifying the skin tones with the same smartphone may 

take lots of time as the original image contains a large number of pixels or features. 

This issue can be tackled by using salient features (instead of all features) in classifying 

the skin tones.  With this aim, we explored six algorithms on the 9000 FST skin tone 

samples with 300 features. Among the 300 features, we identified six sets of the best 

20 features, which produced a near perfect (~100% accuracy) classification of six skin 

tone types.  

In the future, we will include real patients’ images and employ a larger database for 

in-vivo skin tone classification studies.  Thus, using the indexes of these salient fea-

tures could help in our future work of developing an ML-based mobile app to automate 

skin tone classification and related melanin corrections when analyzing tissue oxygen-

ation maps using near-infrared optical measurements. 
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