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Abstract — Chronic wound healing is inconsistent on an 

individual basis, leading to large treatment costs. The 

effectiveness of any treatment approach is typically assessed by 

visual inspection of the wound.  Optical imaging technologies 

have recently been developed to objectively assess wound 

physiology to complement the subjective visual assessment.  One 

such device is a low-cost SmartPhone Oxygenation Tool (SPOT), 

which can measure the tissue oxygenation of the wounds via 

non-contact imaging and assessing healing status. The varying 

skin tones impact tissue oxygenation measurements due to the 

different melanin concentrations in the epidermis of the skin.  

Hence, it is essential to consider melanin-related attenuation in 

the epidermis and account for it during tissue oxygenation 

measurements. This study aims to implement a machine 

learning algorithm to classify the skin tones using in-vivo 

measurements from control subjects towards a future 

correction for these skin tones during imaging studies using 

SPOT.  

In this study, we developed a benchmark dataset of 75,348 

samples of 28 × 28 RGB images of human subjects’ hands. The 

images were then converted to 28 × 28 grayscale images and 

were flattened to attain 784 pixels or features for each sample. 

We also developed a deep learning-based pipeline to classify the 

FST skin types, producing high accuracies (> 98%). The deep 

learning model can be incorporated into the SPOT device as an 

additional feature to verify or correct the melanin concentration 

during near-infrared (NIR) imaging of wound regions. 

Keywords— Deep learning, chronic wounds, Fitzpatrick skin 

tone, hyperparameter tuning, melanin concentration 
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I. INTRODUCTION (HEADING 1) 

In 2014, 8.2 million Medicare beneficiaries were 

affected by chronic non-healing lower extremity wounds. 

Infection management resulted in an expenditure of $28.1 

billion as principal diagnosis up to $96.8 billion with 

secondary diagnosis inclusive [1]. Of the twelve wound types 

considered in the cost analysis, four ulcer types were 

included: venous stasis ulcers, arterial/ischemic ulcers, 

diabetic/neurotrophic ulcers, and pressure ulcers. Despite the 

ample availability of lower extremity ulcer therapies, the 

effectiveness of chronic wound healing is not consistent on 

an individual basis; hence, the large treatment cost [2], [3]. 

Clinicians typically evaluate multiple therapies until they 

determine the most effective for the patient/wound. The 

treatment’s response is assessed by visual inspection of the 

wound [4]. Typical analysis includes the wound bed size, 

shape, and depth, as well as a vascular evaluation. For 

severely infected ulcers, an x-ray and magnetic resonance 

imaging (MRI) may be necessary for a more thorough review 

[4]. With the subjectivity of the clinician’s visual inspection 

and the high-cost imaging modalities, low-cost optical 

technologies have been developed to promote objective 

interventions for ulcer progression. 

An optical modality recently applied for assisting in 

diagnosing wound healing is near-infrared spectroscopy 

(NIRS). Due to the non-invasiveness of the modality, infected 

ulcers can be evaluated in a non-contact and non-ionizing 

manner. NIR light is minimally absorbed and preferentially 

scattered; thus, the technique allows imaging of major 

components in deep tissue (i.e., oxy- and deoxy-hemoglobin). 

A smartphone-based dual-wavelength NIR device, 

SmartPhone Oxygenation Tool (SPOT), has been developed 

to determine oxygenation measurements of physiological 

tissue. Multiple in-vivo studies have been conducted for area-

based imaging of control subjects [5]–[8] and diabetic foot 

ulcer wounds [5] to exhibit the potential of the technology for 

wound healing assessments. Nonetheless, variations in the 

skin pigmentation (i.e., melanin concentrations) surrounding 

the ulcer bed can affect the oxygenation map of the wound 

area, previously not accounted for.  

Skin tone can be classified by the Fitzpatrick skin 

typing (FST) system from I-VI (light to dark), where a 

positive correlation is noted between FST and melanin 

(chromophore responsible for pigmentation) within the 

epidermis. NIR optical imaging applied to dermatological 

diseases involve a range of pigmentation within the area; 

therefore, it is essential to consider the contribution of this 

melanin-related attenuation (in the epidermis). With the 

consideration of skin pigmentation on area-based 

oxygenation maps, the SPOT device can be used among 

diverse racial/ethnic groups.  

 
Hence, the objectives of the current pilot study are (i) to 

obtain digital color images of in-vivo tissues with varying 
FST scales (I-VI) and (ii) to implement machine learning 
algorithms to detect the skin tone automatically.  In our prior 
work [9], [10], we explored six algorithms, including Least 
Absolute Shrinkage and Selection Operation (LASSO) [11], 
Multi-Cluster Feature Selection (MCFS) [12], Random Forest 
(RF) [13], Support Vector Machine with Recursive Feature 
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Elimination (SVMRFE) [14], Unsupervised Discriminative 
Feature Selection (UDFS) [15], and a deep learning algorithm 
Multi-run Concrete Autoencoder (mrCAE) [16] on a dataset 
of 9,000 FST skin tone samples (obtained from colored 
images of a standard FST scale sticker) with 300 features. 
Among the 300 features, we identified six sets of the best 20 
features, which produced a near-perfect (~100% accuracy) 
classification of six skin tone types.  

By the motivation of our previous studies on FST scale 
stickers, we first developed a benchmark dataset for skin tone 
types from pilot in-vivo data from control subjects. Then we 
developed a deep learning framework to classify different skin 
tone types.  In our future work, the developed ML framework 
will be tested on an extensive database of control subjects to 
determine the efficacy of the ML algorithms before using it to 
determine skin tone and correct for the corresponding melanin 
concentration during NIR imaging of wounds using the SPOT 
device.  

II. METHODOLOGY 

A. Dataset Generation and Processing 

Fig. 1 outlined the process of dataset generation and 
processing for Fitzpatrick skin tone types (I-VI).  

 

Fig. 1. Dataset generation and processing. (a) Data generation: Color 

images of 65 frames of subjects were taken at three light levels: Level A: 

White Light with Yellow Lamp, Level B: White Light, Level C: Ambient. 
Twenty (20) ROIs are randomly generated as 28×28 pixel regions for each 

skin type (I-VI), across each frame (1-65) and for each light level. (b) Data 

Processing: Each ROI of 28×28 pixels represents a sample with 2,352 
(28×28×3) RBG features labeled with the corresponding skin tone type (I-

VI). 

Data generation: The color images of 65 frames of 4 
subject locations (dorsal/ventral hand and dorsal/ventral arm) 
were taken at three light levels: Level A: White light with a 
yellow lamp, Level B: White light, and Level C: Ambient 
light. A total of 5 subjects were imaged and the images were 
labeled with a Fitzpatrick Skin Types (FST) as the ground 
truth. Previous work involved categorization of 6 FST based 
on 6 color tones [9], [10]. Since there are skin tone variations 
among subjects, this study utilized a ground truth with 
multiple tones within each of the 6 FSTs. With the samples 
from all locations included, the study involved skin types I-VI 
based on FST scale, shown in Fig. 1A. Twenty regions of 
interest (ROIs) were randomly generated as 28×28-pixel 
regions across each frame (1-65), and for each light level, Fig 
1B. 

 

Data processing: Each ROI is a sample labeled with the 
corresponding skin type based on the FST ground truth. The 
samples were uniformly distributed across the subjects, each 
having 15,600 (20 ROIs/frame × 65 frames/light condition × 
3 light conditions/location × 4 locations) samples, thus ideally 
generating a total of 78,000 samples. Due to an imaging error 
in the case of locations 1 and 4, a total of 75,348 samples were 
finally processed. Each sample with 28×28 pixels of 3 
channels (R, G, B) was converted into grayscale using the 
following expression [17].  

               (0.299 × R + 0.587× G + 0.114 × B)          Eq. 1  

Thus, the final dataset used for the feature selection 
algorithm consists of a matrix with 75,348 samples × 784 
features.  

B. Data Distribution across skin tones 

The dataset is not balanced across all skin tones due to the 
variability of skin tone pigmentation or melanin levels of the 
subjects. Table I shows the overall distribution of data.  

TABLE I.  DISTRIBUTION OF SKIN TONE DATA. THE TABLE SHOWS 

THE DATA DISTRIBUTION IN FOUR DIFFERENT LOCATIONS BASED ON THE 

GRADIENT FST SCALING. FST III HAS THE HIGHEST NUMBER OF SAMPLES 

AND FST VI HAS THE LOWEST NUMBER OF SAMPLES. 

Location 
Gradient FST 

Scaling 
Sample Size 

Dorsal Hand 

III 10,400 

IV 3.900 

V 3.900 

Ventral Hand 

I 3.900 

II 7.800 

III 3.900 

IV 3.900 

Dorsal Arm 

II 3.900 

III 7.800 

IV 3,900 

VI 3,900 

Ventral Arm 

I 7,748 

III 2,600 

IV 3,900 

V 3,900 

Total 75,348 

 

Due to the variability of the skin tone of different areas for 
the same subject, we encountered different FST labels for that 
person in different regions. It is clear from Table I that the FST 
scale III has the highest number of samples, which was found 
across all the locations. On the other hand, FST scale VI was 
only found in the dorsal arm, thus producing the smallest 
sample size based on FST labels. The numbers of samples 
across the gradient FST scale are as follows - FST I: 11,648, 
FST II: 11,700, FST III: 24,701, FST IV: 15599, FST V: 
7,800, and FST VI: 3,900. 
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C. Classification using Convolutional Neural Network  

To classify the skin tones of six categories (FST), we used 
a two-dimensional convolutional neural network (CNN) [18]. 
We applied CNN to four different locations individually, and 
combining all the locations, resulted in five different models 
for FST classification. CNN can capture Spatial and Temporal 
dependencies in the image through the application of relevant 
filters. It works best for complex images with dependencies of 
pixels throughout the image. The role of CNN is to reduce the 
pixel size of the original image in every hidden layer without 
losing critical features for a good prediction. CNN architecture 
consists mainly of two layers – the convolution layer and the 
pooling layer [18]. The CNN element involved in the 
convolution operation is called a kernel. The CNN 
architecture may have more than one convolutional layer. 
Conventionally, the first convolutional operation is 
responsible for low-level features. The model adapts with the 
addition of layers to capture the high-level features[18]. The 
final goal of this operation is to extract the high-level features 
from the input data. After this operation, the convolved feature 
is reduced. At the same time, the dimensionality is either 
increased or remains the same by padding operation. 

The pooling layer is responsible for reducing the spatial 
size of the convolved feature. This reduces the computational 
power to process the data through dimensionality reduction. 
Also, it helps to find the most dominant features from the data. 
There are mainly two kinds of pooling - max pooling and 
average pooling. In this architecture, we used max pooling, 
which returns the maximum value from the portion of the 
image covered by the kernel.  

The convolutional layer and the pooling layer together 
form a hidden layer of CNN. The number of hidden layers 
may be increased for capturing more meaningful features but 
with a more computational cost. After the process mentioned 
above is completed, the output of the last CNN layer is 
flattened and fed to a regular neural network for classification. 

After flattening, it is fed to a fully connected layer which 
can learn the non-linear combinations of the features from the 
previous layer. The backpropagation algorithm is applied to 
every iteration of the training. After a number of epochs, the 
model can distinguish the important and unimportant features 
in the images and classify them using softmax classification 
techniques. In this research, the CNN architecture consists of 
four hidden layers followed by two dense layers, and finally, 
the softmax activation function determines the six classes of 
skin tones. The architecture of CNN is depicted in Fig. 2.  

D. Hyperparameter tuning for CNN model 

We applied three different techniques for hyperparameter 
tuning to acquire the best hyperparameters for classifying skin 
types. Three different techniques are - random search 
technique [19], hyperband technique [20], and Bayesian 
optimization technique [21]. All these three techniques were 
adopted from the Keras scikit learn package. 

 

Fig. 2. CNN Architecture. The basic architecture of CNN consists of 
convolution layers and pooling layers followed by a dense layer. The number 

of layers may vary in different experiments. The image was generated using 

a publicly available tool (https://alexlenail.me/NN-SVG/LeNet.html)   

Random search technique: This technique randomly 
samples from the list of hyperparameter search spaces. This 
algorithm has no end. So, the user needs to specify the number 
of trials. This method suffers the curse of dimensionality to 
reach a preset fixed sampling density. The drawback of this 
technique is there is no guarantee of finding the local minima.   

Hyperband technique: It is a variation of random search 
but with the approach to find the best time allocation for each 
configuration. At first, the algorithm randomly selects hyper-
parameter sets in the search space. Then it evaluates the 
validation loss after a chosen number of iterations and discards 
half of the lowest performers of the hyperparameter. The 
process is repeated till only one model is left. The drawback 
of this technique is that if the number of configurations is 
large, then some good configurations that are slow to converge 
at the beginning are discarded early. This means that good 
hyperparameters are lost. 

Bayesian optimization technique: Bayesian optimization 
is built upon the Gaussian process regression, also known as 
kriging. It is efficient in tuning a few hyperparameters, but its 
efficiency degrades when the search space increases too 
much, up to a point where it is on par with random search. One 
major drawback is that it is not parallel, unlike random search. 
Gaussian processes suffer from a high computational cost if 
the number of evaluations is high. The regression task needs 
O(n3) operations. Thus, with a large number of samples, the 
time to run Bayesian optimization may take significant time. 

In this work, we tuned ten hyperparameters, among which 
four hyperparameters are for the number of kernels in the four 
convolutional blocks, one for the dense unit, two for dropout 
values, one for dense activation, one for learning rate, and one 
for decay. All these hyperparameter values range in various 
numbers.  

All the tuning algorithms were run for 20 trials and 100 
epochs.  The algorithms provide a set of best hyperparameters 
based on the maximum validation score. With the best set of 
hyperparameters, we ran the CNN pipeline again with a higher 
number of epochs (150). Later, the models were saved in the 
local machine, and the test sets were evaluated based on the 
models.  

The dataset was split into the train and test sets according 
to the 80/20 ratio to avoid overfitting. The validation split in 
the CNN algorithm was chosen as 0.2, which means that 20 
percent of the training set was used as the validation set. The 
validation set helps to determine how well the model has been 
trained by observing the validation loss. The training set was 
used to estimate the learning parameters, and the test set was 
used for performance evaluation. 

E. Perfromance Evaluation of the CNN classifier 

The classification performance was evaluated using two 
metrics: accuracy and f1-score. Accuracy measures how many 
positive and negative observations were correctly classified. 
F1-score combines precision and recall into one metric by 
calculating the harmonic mean between precision and recall. 
F1-score gives a better measure of the incorrectly classified 
cases than the accuracy metric. Accuracy is used when the true 
positives and true negatives are more important, while F1-
score is used when the false negatives and false positives are 
crucial. 
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III. RESULT 

A. Best hyperparameters from hyperparameter tuning 

Three different techniques for hyperparameter tuning - 
random search, hyperband, and Bayesian optimization was 
applied to the dataset from four different locations 
individually and combined. Each of the techniques provided a 
set of best hyperparameter values. It implies that there is a total 
of 15 (4 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 × 3 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠 +
𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 3 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠) different sets of best 
hyperparameter values, among which the best 
hyperparameters were chosen based on the validation 
accuracy. Ten hyperparameter values were tuned to get the 
best output of the CNN models. The hyperparameters and 
their ranges are as follows:  

a. Filters for convolutional layer 1: {32, 64, 128} 

b. Filters for convolutional layer 2: {64, 128, 256} 

c. Filters for convolutional layer 3: {128, 256, 512} 

d. Filters for convolutional layer 4: {128, 256, 512} 

e. Dropout 1: minimum value=0.0, maximum 
value=0.5, interval step=0.05 

f. Dense unit: minimum value=32, maximum 
value=512, interval step=32 

g. Dense activation functions: {relu, tanh, sigmoid} 

h. Dropout 2: minimum value=0.0, maximum 
value=0.5, interval step=0.05 

i. Learning rate: minimum value=0.0001, maximum 
value=0.01, log sampling was applied 

j. Learning rate: minimum value=0.001, maximum 
value=0.1, log sampling was applied 

The number of filters was increased with the increase of 
convolutional layers. The main idea here is that initially, CNN 
learns the low-level features with a few filters, and in the end, 
it learns the high-level features with a higher number of filters. 
It was noticed after the tuning that, even though the best 
hyperparameter values varied for different techniques, the 
validation accuracies were very high and close to each other. 
One such scenario, where data from all the locations were 
combined, is shown in Table II.  

 

TABLE II.  BEST VALUES OF HYPERPARAMETERS FOR COMBINED DATASET. THIS TABLE SHOWS THE BEST VALUES OF HYPERPARAMETERS FOR THREE 

DIFFERENT TECHNIQUES (HYPERBAND, RANDOM SEARCH AND BAYESIAN OPTIMIZATION). THE BEST SET WAS CHOSEN BASED ON THE VALIDATION 

ACCURACY. 

After getting the best hyperparameters, we ran the CNN 
algorithm again with these parameters, but we used a larger 
number of epochs (150). We ran CNN three times for all 
locations combined because of the three different sets of 
values coming from three different hyperparameter techniques 
used. This time we observed that the model converges and the 
training, validation, and test accuracies are high (> 98%), as 
shown in Fig 3. This figure indicates that we need the proper 
combination of hyperparameters to achieve high accuracy.  

 

Fig. 3. Accuracies of different hyperparameter techniques for 

combined dataset. The figure indicates that different sets of best 
hyperparameters from three techniques produce high accuracies for the 

combined dataset.   

Similar characteristics were also noticed in other dataset 
from different locations (dorsal hand, ventral hand, dorsal arm 
and ventral arm), which is not shown in the paper.  

B. Evaluation Results 

We evaluated the five different models using two 
evaluation metrics- accuracy and f1-score. Also, training loss 
and validation loss were observed after each model was 
trained. It was ensured that the loss was as minimum as 
possible. Also, the confusion matrix was analyzed using the 
test dataset to get a clear picture how the model works. Both 
model loss and confusion matrix for the combined test data is 
depicted in Fig. 4. We used the model with the 
hyperparameters from Bayesian optimization to generate the 
figure due to its slightly better test accuracy than the other two 
techniques. It is clear from the confusion matrix that the model 
can predict the true classes even though the dataset is 
imbalanced.  

The same scenario was also noticed in all the other four 
different datasets from the four locations we used.  The 
accuracies of the best model among the three techniques for 
the five different datasets are shown in Fig. 5. It is clear from 
Fig. 5 that with the best hyperparameter values, the CNN 
architecture was able to learn important features, and that is 
why the accuracies were higher for every dataset from four 
locations and combined locations as well.  
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Fig. 4. Model loss and confusion matrix for one model using the 

hyperparameters from bayesian optimization on combined dataset. a) 

This is a loss vs epoch plot. We can see from the figure that with the 

increasing number of epochs the loss is going down. b) Confusion matrix for
 the test dataset. It is clear that most of the classes were correctly predicted.. 

Fig. 5. Metric values for different locations. Metrics are: Training 
accuracy, validation accuracy, tesing accuracy, and F1-Score. The metric 

values are high for all the locations (> 98%).Ventral hand and dorsal arm 

have the highest values (~100%). On the other hand dorsal hand has the 

lowest validation, testing and f1-score which is still above 98%. 

IV. DISCUSSION 

Our hypothesis was that with the proper hyperparameter 
tuning, we would be able to classify the skin tones of real 
human subjects with high accuracy.  To test the hypothesis,

 first, we developed a dataset for FST skin tone types from four 
locations of five subjects, and they were labeled based on the 
gradient FST scaling. Next, we developed a deep learning 
framework optimized using three hyperparameter techniques.

 
From the data distribution, we noticed that the dataset is 

imbalanced. FST III has the highest number of samples, 
whereas FST VI has the lowest samples. Moreover, all the 
FST classes were not present in any of the four locations. For 
example, the dorsal hand had only three FST scaling samples: 
FST III, FST IV, and FST V. Also, from the metadata 
analyses, it was noticed that due to skin pigmentation 
variability, different locations of the same subject have 
different FST skin types. 

The result shows that the classification accuracy and f1-
score are high for all locations. Also, when we combined the 
dataset, the accuracy and f1-score did not deteriorate. In all the 
cases, the score was more than 98%. But this may happen due 
to overfitting of the data. We used 65 frames of a single video, 
and these 65 frames came from the same location. All the 
frames for the single videos may bear the same information,

 which may cause the testing data to be the same as the training 
data.  

V. CONCLUSION AND FUTURE REMARKS

 This study represents a preliminary experiment and 
observation of skin tone classification for in-vivo subjects, 
which would help in our future study to incorporate the effect 
of skin tone in physiological wound analysis.  

Future studies will incorporate a large number of 

subjects’ images to develop an extensive benchmark dataset. 

The larger sample size will help the machine learning model 

learn more confidently for more reliable results prior to 

implementing it as a correction factor during physiological 

imaging using the smartphone-based optical device (SPOT). 
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